- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nie, S.; Ge, Y.; Vuran, M. C. (, IEEE 20th International Conference on Mobile Ad-Hoc and Smart Systems (MASS))Millimeter-wave (mmWave) spectrum offers wide bandwidth resources that are promising to realize high-throughput wireless communications in agricultural fields. Due to the relatively small wavelength at this frequency band, mmWave signals tend to be scattered when the wireless link is established above the crop canopy. However, little is known about the scattering effect caused by crop canopy at mmWave. In this work, the scattering loss in the mmWave spectrum is quantified for different crop canopy states that are represented by the leaf area index. In particular, an approach based on a Rayleigh roughness criterion is utilized, coupled with canopy height statistics, to calculate the scattering loss. The results of the model agree well with empirical data collected from agricultural field experiments conducted in Summer 2021. The results demonstrate that as the leaf area index decreases with crop maturity, the scattering loss also decreases. This is the first work that illustrates the feasibility of using the mmWave communication links to perform sensing on the leaf area index, which is a critical metric in estimating crop conditions.more » « less
-
Jing, Pengfei; Tang, Q.; Du, Y.; Xue, L.; Luo, X.; Wang, T.; Nie, S.; Wu, S. (, Proceedings of USENIX Security Symposium)null (Ed.)
An official website of the United States government

Full Text Available